15 June 2005

Keith S. Kaye, MD
Chair, Infection Control Committee
Co-Director Duke Infection Control Unit
Duke University Medical Center
Durham, North Carolina 27710

Dear Dr. Kaye:

The following is our report assessing the efficacy of sterilization processes when medical equipment is purposefully contaminated with high numbers of microorganisms, which is then overlaid with hydraulic fluid prior to sterilization.

Purpose: To determine if hydraulic fluid on surgical instruments alters the effectiveness of the sterilization process

Methods: Surgical instruments were inoculated with test microorganisms, coated with hydraulic fluid (provided by Duke University Medical Center), sterilized, and then cultured. Test items consisted of heat-resistant items (stainless steel knife handles) and heat-sensitive items (plastic syringe barrels) that were inoculated with 2×10^3 Staphylococcus aureus, 3×10^5 Pseudomonas aeruginosa, 6×10^4 Geobacillus stearothermophilus spores or 2×10^6 Bacillus atrophaeus spores. Following inoculation with the suspension of 10 µl of microorganisms, the carriers were allowed to air dry for 1 hour (knife handles) or 2 hours (plastic syringe barrels). The test item was then overlaid with the hydraulic fluid (20 µl) and placed in a peel pack or in a wrapped tray, and sterilized by either steam sterilization (prevacuum, 132°C for 4 minutes using a Steris Amsco Century V-120) or ethylene oxide sterilization (100% ETO using a Steris Amsco Eagle 3017 EO Sterilizer, Mentor, Ohio). After sterilization, each carrier was aseptically placed in a sterile test tube with 35 mL of trypticase soy broth (TSB) and allowed to shake for 1 hour. After shaking, each tube was vortexed and the TSB was filtered. In the final spore runs, the carriers were swabbed after the TSB was filtered, in order to verify that spores were not remaining adhered to the carriers. These swabs were then placed in 3 mL of TSB and incubated 48 h at 37°C or 55°C (depending on the spore used) along with the test filters, which were placed on sheep blood agar. The spores were also processed in an open, wrapped tray (1 run, 5 replicates) in order to verify that our test organisms were not removed via the process of being placed in peel packs. Negative controls were performed by placing the inoculum on the carriers and allowing the inoculum to air dry. These carriers were then aseptically processed without the hydraulic fluid in order to verify that sterilization would normally be achieved. Positive controls were done as described above without being exposed to the sterilization process. This provided an estimate of the number of bacteria/spores present at the time of sterilization. These experiments were done from January 7, 2005 to April 27, 2005.

Results: Following sterilization, cultures of experimentally contaminated surgical instruments were negative (see Table).
Conclusion: In these laboratory experiments, we found that replacing cleaning detergent with hydraulic fluid did not alter the effectiveness of the sterilization process as high numbers of clinically-relevant bacteria and standard test spores (relatively resistant to the sterilization process) were completely inactivated. Our previous research has demonstrated that surgical instruments are most commonly contaminated with less than 100 vegetative bacteria (Am J Infect Control 1988;26:143). Thus, our recent experiments, which used much higher numbers of vegetative bacteria, provide assurance that infection would not result from instruments coated with hydraulic fluid and then sterilized. The use of high numbers of spores, which are relatively resistant to sterilization, further supports our conclusion that sterilization was not adversely affected by hydraulic fluid.

If there are any questions, please contact us.

Sincerely,

[Signature]

William A. Ritala, Ph.D., M.P.H.
Director, Hospital Epidemiology, Occupational Health and Safety Program
UNC Health Care System
Professor of Medicine
UNC School of Medicine
Director, Statewide Program in Infection Control and Epidemiology
UNC School of Medicine
Chapel Hill, NC 27514
Phone: 919-843-1357
FAX: 919-966-1451
Email: brutala@unche.unc.edu

David J. Weber, M.D., M.P.H.
Medical Director, Hospital Epidemiology, Occupational Health and Safety Program
UNC Health Care System
Professor of Medicine, Epidemiology, and Pediatrics
UNC School of Medicine
Chapel Hill, NC 27514
Beeper: 919-347-0639
FAX: 919-966-1451

[Signature]

Maria F. Gergen, M.T., ASCP
Medical Technologist
UNC Health Care System
Chapel Hill, NC 27714
Phone: 919-966-1636

CC: Daniel J. Sexton, MD
John J. Engemann, MD
<table>
<thead>
<tr>
<th>Test Organisms</th>
<th>Method of Sterilization</th>
<th>No. of Positive</th>
<th>Quantitated Cartage</th>
<th>No. of Runs</th>
<th>Mean (Wetprcc Open Tray) Ethylene Oxide (Sterilization Packet) Ethylene Oxide Steam Sterilization</th>
<th>Bacillus anthracis spores</th>
<th>Pseudomomas aeruginosa</th>
<th>Staphylococcus Aureus Methicillin-Resistant</th>
<th>Staphylococcus Aureus</th>
<th>Geobacillus stearothermophilus spores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67.5°C Chamber</td>
<td>67.5°C Chamber</td>
<td>67.5°C Chamber</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67.5°C Chamber</td>
<td>67.5°C Chamber</td>
<td>67.5°C Chamber</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Effect of Hydrazine Fluid on Steam and Ethylene Oxide Sterilization